
  

Common Websites Security Issues

Ziv Perry



  

About me

● <short description>



  

Denial of Service

Transitive trust

DNS Spoofing ICMP bombing
Source routing

Mitnick attack

TCP splicing

SYN flooding

XSS

CSRF

Sql injection



  

XSS

CSRF

Sql injection



  

XSS

CSRF

Cross Site Scripting

Cross Site request forgery



  

Hacking & Websites?

● More and more applications are porting for the 

Internet – some are written for on line use only

● On line commerce and services, include 

financial, government etc.

● No standard for digital signature for the mass

● The browser has become the most important 

tool in computers 



  

Websites security is more 
important than ever



  

Very brief introduction to
Web apps

And no, we are not going to be a web developers...



  

HTTP the protocol of the web

● Client/Server

● Several requests type
● post/get/put...

● Stateless
● Has significant impact on application design and security

Browser Server

request

response



  

Facing stateless problem

● Cookies are small pieces of data stored in the 

browser and attach to each request
● As a result – cookies “add” state

Browser Server

request

response (set cookie)

request (cookie attached)



  

Cookies

● Cookies are used for:
● Authentication

● Personalization

● Tracking

● Cookies restrictions:
● Ownership

● Expiration (temporaries, persistent, third-party)



  

Javascript

● Powerful dynamic scripting language
● EMCAScript (EMCA-262)

● Embedded – enable programmatic access to 

objects within other application
● Primarily used in web browsers for creating dynamic 

websites



  

Javascript security model

● Script run in a “sandbox”
● No access to the OS (file system, network, etc.)

● Same-origin policy
● Can only access to the document/window object 

properties from the same server (domain), protocol 

(scheme) and port

● User can grant privileges to signed scripts



  

Browser security model

● Same-origin policy

● Library import
● Javascript from cross domain, behave as local

● Data export
● Data can be send anywhere



  

XSS



  

Cross-Site Scripting

XSS exploit concerns the ability of a website to 

run scripts within the web browser, using 

Javascript.

Obviously the browser  designed to sandbox the 

script, so this has restricted access to the 

computer running the browser.



  

Cross-Site Scripting

But the browser can only have low-level 

information to limit what the script can do.

So if the attack is at a higher conceptual level of 

abstraction, the lower level of logic at which the 

browser sandboxing of website delivered scripts 

occurs will not be effective.



  

XSS risks

● “reflection attack”
● User is tricked to visit buggy (badly written) site

● The browser run the attack script

● Sending users private data to the attacker
● Cookies data, form data, keystrokes, etc.

● Changing content/behavior of a website
● Fake user actions, fishing, disguise



  

XSS Attack Types
Theory and Practice



  

Type 0: DOM-based (local)

● Local attack

● Occurs in a context that the web browser treats 

as of local origin, allowing for unprivileged 

access to local objects

● Persistent & non persistent

● Cross-Zone Scripting 



  

Type 1: Non persistent (reflected)

● Arises when an attacker succeeds in getting a 

victim to click on a supplied URL which is then 

submitted to another website.

● Occurs when server side pages are generated 

from client side input

● Most popular attack



  

XSS type 1 example (live sample)

● Simple “Hello user!” form:

● GET /?username=<script>alert(1);</script>

Enter your name: <input type="text" name="username" />
<input type="submit" value="GO" />

<p>Hello <?php echo $_GET['username']; ?>!</p>

<p>Hello <script>alert(1);</script></p>



  

Type 2: Persistent (stored)

● Malicious data stored on web server
● websites allow inserting HTML content

● Most potentially harmful attacks
● Attack anyone who enter this website



  

XSS type 2 example (live sample)

● Malicious data stored in server (article, forum 

post, blog comment etc.)

● The malicious script is execute every time the 

page displayed



  

XSS type 0 example (ie)

Attacker use the privileges granted by local zone

to access file system and applications

 
<a href="C:\WINDOWS\Help\ciquery.htm?[XSS_ATTACK]”>link</a>



  

XSS live example (or VIDEO)

This is a restricted slide until the website with the 

XSS exploit will fix the problem or till 24.5.09 (the 

sooner)



  

Avoiding XSS

● Never trust user input!

● If there is no reason to, never allow HTML in 

user input.

● Escape all characters (HTML entities)

<script> alert("1"); </script>

&lt;script&gt; alert(&quot;1&quot;); &lt;/script&gt;



  

Avoiding XSS on HTML user input

● Never trust user input!

● Remove all scripts tags

● Remove all DOM events

from HTML tags

● Filter all content for known XSS exploits
● http://ha.ckers.org/xssAttacks.xml 

<div onclick="foo();">
 <p onmouseover="bar();">

http://ha.ckers.org/xssAttacks.xml


  

XSRF



  

Cross-Site Request Forgery

● XSRF, also known as one click attack or session 

riding.

● XSRF exploits the trust a website has in a user 

by forging a request from a trusted user.

● These attacks are often less popular, more 

difficult to defend against than XSS attacks, and, 

therefore, more dangerous.



  

Creating a forgery request

● Hyperlink (require user interaction)

● HTML tags

<a href="http://mybank.com?action=transfer...">link</a>

<img src="http://mybank.com?action=tranfer..." />

<script src="http://mybank.com?action=tr..."></script>

<iframe src="http://mybank.com?action=tr..." ></iframe>



  

Creating a forgery request

● CSS

● Javascript (and Flash)
● Using Javascript we can manipulate the DOM and create 

any tag (with src attribute for GET requests) or even fully 

functional forms and submitting them (for POST requests)

.xsrf  {
 background:url("http://mybank.com?...");
}



  

XSRF example (live sample)

● The attack works by including a link, script or 

any request-tag in a page that accesses a site to 

which the user is known to have authenticated.

Browser

MyBank Cookie

Email Cookie

Amazon Cookie

Malicious website

MyBank



  

XSRF Amazon 1-Click example

Shopping for free at amazon using XSRF exploit

Attacker create a forgery request and just wait for 

the loot to arrive



  

XSRF Defenses – Salting forms

● Using a unique token to identify the request

● TOKEN =>hash(user_id + salt) + salt

<form method="post">
 <input type="hidden" name="salt" value="<TOKEN>" />

...
</form>



  

XSRF Defenses – Referer check

● Checking HTTP referer header against 

authorized actions/pages list (not only domain)

http://www.example.org/manage/deleteUser?userId=12

GET /manage/deleteUser?userId=12 HTTP/1.1
Host: www.example.org
User-Agent: Mozilla/5.0 ...
Accept: text/html,application/xhtml+xml ...
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7 ...
Keep-Alive: 300
Connection: keep-alive
Referer: http://www.malicious.com/fromPage



  

XSRF Defenses - Auth & Approval

● By creating an approval page for actions, the 

one-click attack is eliminated

● Re-Authorization is the same method, with an 

extra protection against stolen identity



  

XSS vulnerabilities 
bypass all XSRF 

protections



  

Thank You!

The slides is available at:  (insert link here) 

Ziv Perry
info@zivperry.com



  

Further reading

OWASP the free and open application security 
community
http://www.owasp.org

The Cross-Site Scripting (XSS) FAQ
http://www.cgisecurity.com/xss-faq.html

The Cross-Site Request Forgery (CSRF/XSRF) 
FAQ
http://www.cgisecurity.com/csrf-faq.html 

Peter Watkins discovers Client-Side Trojans
http://www.tux.org/~peterw/csrf.txt

CERT® Advisory CA-2000-02 Malicious HTML 
Tags Embedded in Client Web Requests
http://www.cert.org/advisories/CA-2000-02.html

Thomas Schreiber discovers CSRF
http://www.securenet.de/papers/Session_Riding.pdf

Jesse Burns discovers CSRF
http://www.isecpartners.com/files/XSRF_Paper_0.pdf

Cross-site scripting
http://en.wikipedia.org/wiki/Cross-site_scripting

Cross-site request forgery
http://en.wikipedia.org/wiki/Cross-site_request_forgery

http://www.owasp.org/
http://www.cgisecurity.com/xss-faq.html
http://www.cgisecurity.com/csrf-faq.html
http://www.tux.org/~peterw/csrf.txt
http://www.cert.org/advisories/CA-2000-02.html
http://www.securenet.de/papers/Session_Riding.pdf
http://www.isecpartners.com/files/XSRF_Paper_0.pdf
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_request_forgery

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

